TARA MÉDITERRANÉE | Tara, un voilier pour la planète

TARA MÉDITERRANÉE

© Tara Méditerranée

2014

Evaluation de l’impact des micro-plastiques sur la santé et le fonctionnement des écosystèmes en Méditerranée

Le but est de mieux comprendre les impacts du plastique sur l’écosystème méditerranéen. La mission quantifie les fragments de plastique, ainsi que la taille et le poids de ces fragments. Elle qualifie aussi les matières plastiques qui se répandent en mer. Encore inconnus, de véritables écosystèmes microscopiques (bactéries, virus, micro-algues, micro-prédateurs) se développent à la surface de ces fragments de plastique posant des questions sur l’entrée probable de ces molécules dans la chaine alimentaire – ce dernier sujet étant quasiment inexploré en Méditerranée.

Résumé : L’accumulation de débris de plastique dans la nature est “l’un des changements récents le plus répandu et le plus durable à la surface de notre planète” (Barnes et al, 2009), et une des grandes préoccupations environnementales de notre temps. Nous connaissons malheureusement trop peu de choses sur ce qu’il advient de ces plastiques et sur leurs rôles dans la dynamique des écosystèmes pour pouvoir prédire leurs impacts à venir sur les océans.

Pour combler cette lacune critique, Tara Méditerranée sera la première expédition d’envergure basée sur une approche pluridisciplinaire, afin de mieux comprendre les impacts du plastique en surface au niveau de l’écosystème de la mer Méditerranée, où un grand nombre de plastiques ont déjà été documentés (Collignon, et al., 2012). Nous allons quantifier et identifier les plastiques de surface et aussi les polluants organiques associés au plastique; documenter l’interaction entre les plastiques et les éléments de l’écosystème (par exemple, le plancton et les poissons); explorer les dynamiques communautaires, ainsi que la fonction des formes de vie microscopiques vivants sur le plastique (y compris les espèces étrangères ou potentiellement toxiques). Enfin, nous allons utiliser une nouvelle approche permettant de relier la distribution des fragments de plastique à la circulation et aux propriétés physico-chimiques des masses d’eau (à l’échelle du bassin). Nous voulons ainsi créer une base de données nécessaire aux études de modélisation, permettant de prédire la distribution spatiale du plastique en mer Méditerranée.

Motivation : Des rapports sur la “Great Pacific Garbage Patch”, un amas de détritus (généré par les humains) dans le gyre du Pacifique Nord, ont attiré l’attention sur l’accumulation de plastique dans les océans du monde. Même les mers des régions polaires sont envahies de débris plastique (Tara Oceans, communiqué de presse, 2011). Les premiers rapports révelant la presence de déchets plastique dans l’océan ont été publiés il y a plus de 40 ans (Carpenter et Smith, 1972). Depuis cette période, la prévalence des plastiques continue à augmenter, car notre dépendance des produits en plastique jetables augmente chaque année (Thompson et al., 2004). La plupart des plastiques fabriqués aujourd’hui ne sont pas biodégradables. Pendant la seule année 2008, les 27 pays de l’Union Européenne (plus la Norvège et la Suisse) produisaient environ 24,9 mégatonnes de déchets plastiques (Mudgal et al., 2011). L’abondance, la distribution et les impacts sur les écosystèmes marins dynamiques sont difficiles à prévoir, sans un travail d’évaluation globale et coordonné (Galgani, et al., European Commission Joint Research Center Report, 2010).

Historiquement, les effets du plastique sur les écosystèmes marins les mieux documentés concernent les grands animaux (tortues, dauphins, etc.) qui mangent ou sont piégés par les déchets plastiques. Des effets moins connus comprennent la modification physique des habitats, ainsi que le transport d’espèces étrangères et nuisibles. Les coûts socio-économiques doivent aussi être pris en compte, car les déchets visibles perturbent notre relation avec des espaces naturels “vierges”. La grande majorité du plastique aquatique existe sous forme de “micro-plastiques” presque invisibles (< 5 mm). Ces micro-plastiques sont produits par les processus de dégradation ou d’érosion sur des longues périodes. Mais parfois ils entrent directement dans l’eau avec les abrasifs (utilisés pour le sablage, par exemple) ou dans les cosmétiques (e.g., exfoliants pour le visage contenant des microbilles).

Toxines associées aux plastiques. Non seulement les micro-plastiques sont les plus abondants, mais ils représentent aussi la plus grande surface de plastique, et sont de véritables éponges de POPs (Polluants Organiques Persistants) (Teuten, et al, 2007; Hirai, et al, 2011). La plupart sont très toxiques, et ont un large spectre d’effets chroniques, y compris les perturbations endocriniennes, les mutations, et cancers. Parmi les POPs détectés sur des microplastiques marins, il y a les BPC (Biphényles PolyChlorés) et les HAP (Hydrocarbures Aromatiques Polycycliques), ainsi que les pesticides organochlorés comme le DDT (DichloroDiphénylTrichloroéthane) (Rios et al., 2007). De plus, les additifs relargués quand le plastique se dégrade (par exemple, les phtalates, BPA), induisent des effets toxiques dans les organismes aquatiques, même à des niveaux faibles (Oehlmann, et al., 2009) et s’accumulent dans les organismes qui ingèrent le plastique (Boerger, et al, 2010; Wright, et al., 2013), avec des conséquences inconnues sur la chaîne alimentaire marine, la santé humaine, et l’environnement.

Le “microbiome plastique”. La surface des débris de plastique dans l’océan regorge d’organismes microscopiques. Le rôle des microbes (bactéries, archées, picoeucaryotes, et virus) dans la transformation des plastiques aquatiques et des toxines associées (et vice versa) n’a pas encore été étudié en profondeur. Nous allons caractériser le microbiome de l’habitat plastique crée par l’homme, en posant les questions “Quels organismes vivent sur le plastique?” et “Que font-ils?” Les communautés microbiennes se développant à la surface des plastiques de l’océan sont distinctes de celles de la colonne d’eau, et également distinctes des surfaces non-plastiques. Ce fait suggère déjà qu’il existe un degré de spécificité rélative aux plastiques (M. Duhaime , TARA Océans). Nous allons évaluer aussi à quel point les plastiques servent de vecteurs de microbes pathogènes et toxiques, par exemple la bactérie de choléra (Vibrio spp.) qui colonise des plastiques de l’océan (Zaikab 2011), et des algues toxiques qui vivent sur les plastiques en mer Méditerranée (Maso et al., 2003).

Objectifs scientifiques de l’expédition Tara Méditerranée

1 – Évaluer la distribution spatiale des fragments de plastique (0,3 à 50 mm) flottants en mer Méditerranée

2 – Caractériser chimiquement les différents types de matière plastique

3 – Etudier les communautés microbiennes attachées au plastique, à l’aide de la microscopie électronique à balayage, la microscopie stéréoscopique, et les analyses génomiques

4 – Évaluer la structure de l’écosystème planctonique en contact avec des fragments de plastique, et sa variabilité jour/nuit

5 – Acquérir des descripteurs environnementaux: température, salinité, turbidité, pigments, couleur de l’océan

Cette approche permettra:

(1) la quantification spatiale et la caractérisation des types de polymères de plastique en mer Méditerranée

(2) l’identification des sources prolifiques ponctuelles, ou zones d’accumulation de plastique

(3) l’analyse des POPs (Polluants Organiques Persistants) liés au plastique

(4) l’étude des relations entre les fragments de plastique et les masses d’eau particulières, et les écosystèmes associés

Méthodes

Travail en mer. Les échantillons seront constitués de 3 collectes de jour avec le filet de surface Manta, et une collecte de nuit, de 30 minutes chacune. Les échantillons seront stockés et analysés selon des protocoles différents. Simultanément, des échantillons d’eau seront prises pour analyser les communautés microbiennes dans la colonne d’eau, ainsi que les pigments de phytoplancton. L’échantillonnage physico-chimique sera effectué en utilisant un thermosalinographe SBE et un CA hyperspectral. Une CTD SBE sera déployée verticalement pour déterminer la profondeur de la couche de mélange. Des images satellites “Ocean Colour” fournies par ACRI-ST, et le modèle de circulation Mercator, seront utilisés pour déterminer les zones d’intérêt pour l’échantillonnage en mer. Des collectes supplémentaires courtes fourniront les échantillons vivant pour la stéréomicroscopie directe du plancton de surface dans différentes régions de la Méditerranée. Quand ce sera possible, des collectes de neuston (plancton de surface) seront effectuées pour recueillir les petits poissons qui mangent du plancton. Les contenus des estomacs des poissons capturés seront examinés pour la presence de microplastiques.

Travail en laboratoire. La spectroscopie FT-IR (Fourier Transform-Infrared Spectroscopy) sera utilisée pour déterminer les différents types de polymères. Une base de données des spectres FT-IR représentant les familles de microplastiques marins dominants sera établie pour chaque région de la Méditerranée. Les organismes multicellulaires (métazoaires) attachés au plastique, et les biofilms microbiens seront caractérisés par différentes techniques d’imagerie, Microscopie Electronique à Balayage (MEB) et le séquençage génomique des communautés adhérentes aux plastiques. Les polluants organiques seront extraits à partir des échantillons de plastique en vrac et identifiés en utilisant une combinaison de spectroscopie de masse par chromatographie en phase gazeuse (GC-MS) et de chromatographie en phase liquide. La biodiversité – déterminée selon la méthode ZooScan sur des échantillons de zooplancton collectés pendant le jour & la nuit (Gorsky et al, 2010) – sera comparée avec les modèles de distribution des fragments plastiques, et confrontés avec les caractéristiques physiques de la masse d’eau. Les contenus stomacaux de poissons capturés dans la nuit à la surface seront utilisés pour les études de bioaccumulation des plastiques.

Chercheurs participants (listés par ordre alphabétique):

Emmanuel Boss, Université du Maine (avec le soutien de la NASA) : optique marine

Stéphane Bruzaud, Université de Bretagne Sud : classification des matières plastiques

Melissa Duhaime, Université du Michigan : colonisation plastique – SEM, génomique, chimie

François Galgani, Ifremer Corse : base de données des matières plastiques méditerranéenes

Marie Garrido, Université de Corse : phytoplancton

Jean-François Ghiglione, CNRS / UPMC, Observatoire Océanographique de Banyuls, France: bactéries et archées

Gaby Gorsky, UPMC / CNRS, Observatoire Océanologique de Villefranche-sur-Mer, France: responsable du projet TaraMedPlastic

Jean-Louis Jamet, Université Toulon-Var, France: diversité du zooplancton

Maria Grazia Mazzocchi, Stazione Zoologica Anton Dohrn, Naples, Italie: diversité du zooplancton

Anne Molcard, MIO Université de Toulon-Var, France: océanographie physique

Maria-Luiza Pedrotti, CNRS, et Stéphanie Petit,UPMC : communautés macrobiennes et microbiennes fixées

Mathias Ricking, Université libre de Berlin : chimie des polluants

Richard Sempéré, Université d’Aix-Marseille, France: phtalates

Lars Stemmann & Amanda Elineau, UPMC, Observatoire Océanologique de Villefranche-sur-Mer: distribution de plastique et de plancton en relation avec l’hydrodynamique